15 The total surface area of a solid hemisphere is equal to the curved surface area of a cylinder.
The radius of the hemisphere is $r \mathrm{~cm}$.
The radius of the cylinder is twice the radius of the hemisphere.
Given that
volume of hemisphere : volume of cylinder $=1: m$
find the value of m.
$m=$

16 (a) Rationalise the denominator of $\frac{a+\sqrt{4 b}}{a-\sqrt{4 b}}$ where a is an integer and b is a prime number. Simplify your answer.
(b) Given that $\left(\sqrt{\frac{y}{x}}\right)^{-5}=\frac{x^{m}}{y^{m}}$ where $x \neq y$
find the value of m.

$$
m=
$$

17 Here is triangle $A B C$.

Diagram NOT accurately drawn

Calculate the value of x.
Give your answer correct to 3 significant figures.

18 The graph of $y=\mathrm{f}(x)$ is shown on the grid.

(a) On the grid above, sketch the graph of $y=\mathrm{f}\left(\frac{1}{2} x\right)$

The graph of $y=\mathrm{f}(x+k)$ is shown on the grid below.

(b) Write down the value of k

19 g is the function with domain $x \geqslant-3$ such that $\mathrm{g}(x)=x^{2}+6 x$
(a) Write down the range of g^{-1}
(b) Express the inverse function g^{-1} in the form $\mathrm{g}^{-1}: x \mapsto \ldots$

20 A bowl contains n pieces of fruit.
Of these, 4 are oranges and the rest are apples.
Two pieces of fruit are going to be taken at random from the bowl.
The probability that the bowl will then contain $(n-6)$ apples is $\frac{1}{3}$
Work out the value of n
Show your working clearly.
$21(2 x+23),(8 x+2)$ and $(20 x-52)$ are three consecutive terms of an arithmetic sequence.
Prove that the common difference of the sequence is 12

