16 There are 12 beads in a bag.
7 of the beads are red.
3 of the beads are green.
2 of the beads are yellow.
Lucy takes at random a bead from the bag and keeps it.
Then Julian takes at random a bead from the bag.
(a) Work out the probability that they each take a yellow bead.
(b) Work out the probability that the beads they take are not the same colour.

17 Here are a solid sphere and a solid cylinder.

The radius of the sphere is $r \mathrm{~cm}$.
The radius of the cylinder is $r \mathrm{~cm}$.
The height of the cylinder is $2 r \mathrm{~cm}$.
The total surface area of the cylinder is $k \pi \mathrm{~cm}^{2}$
(a) Find an expression for k in terms of r.
(b) Show that the ratio
total surface area of the cylinder: total surface area of the sphere is the same as the ratio
volume of the cylinder: volume of the sphere

18 Show that $\frac{\sqrt{8}}{\sqrt{8}-2}$ can be written in the form $n+\sqrt{n}$, where n is an integer. Show your working clearly.

19

B, C, D and E are points on a circle.
$A B$ is the tangent at B to the circle.
$A B$ is parallel to $E D$.
Angle $A B E=73^{\circ}$
Work out the size of angle $D C E$.
Give a reason for each stage of your working.

20 Here is a cube $A B C D E F G H$.

Diagram NOT accurately drawn
M is the midpoint of the edge $G H$.
Find the size of the angle between the line $M A$ and the plane $A B C D$. Give your answer correct to 1 decimal place.

21 Here is a triangle $X Y Z$.

Diagram NOT accurately drawn

The perimeter of the triangle is $k \mathrm{~cm}$.
Given that $x=y-1$
find the value of k.
Show your working clearly.

$$
k=
$$

$22 A B C D E F$ is a regular hexagon.

Diagram NOT accurately drawn
$A B X$ and $D C X$ are straight lines.
$\overrightarrow{A B}=\mathbf{a} \quad \overrightarrow{B C}=\mathbf{b}$
Find $\overrightarrow{E X}$ in terms of \mathbf{a} and \mathbf{b}.
Give your answer in its simplest form.

23 The function f is defined as $\mathrm{f}(x)=\frac{\sqrt{x^{2}+k^{2}}}{x}$ for $x>0$ and where k is a positive number.
(a) Find the value of p for which $\mathrm{f}^{-1}(p)=k$

$$
\begin{equation*}
p= \tag{3}
\end{equation*}
$$

The function g is defined as $\mathrm{g}(x)=x^{2}$ for $x>0$
(b) Given that $\operatorname{gf}(a)=k$ for $k>1$
find an expression for a in terms of k.

$$
a=
$$

